Extension of Constants, Rigidity, and the Chowla-Zassenhaus Conjecture

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zassenhaus Conjecture for A6

For the alternating group A6 of degree 6, Zassenhaus’ conjecture about rational conjugacy of torsion units in integral group rings is confirmed.

متن کامل

Verification of the Ankeny – Artin – Chowla Conjecture

Let p be a prime congruent to 1 modulo 4, and let t, u be rational integers such that (t + u √ p )/2 is the fundamental unit of the real quadratic field Q(√p ). The Ankeny-Artin-Chowla conjecture (AAC conjecture) asserts that p will not divide u. This is equivalent to the assertion that p will not divide B(p−1)/2, where Bn denotes the nth Bernoulli number. Although first published in 1952, this...

متن کامل

Chowla-selberg Formula and Colmez’s Conjecture

In this paper, we reinterpret the Colmez conjecture on Faltings’ height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving Faltings’ height of a CM abelian surface and arithmetic intersection numbers, and prove that Colmez’s conjecture for CM abelian surfaces is equivalent to the cuspitality of this modular form.

متن کامل

Another Counterexample to a Conjecture of Zassenhaus

A metabelian group G of order 1440 is constructed which provides a counterexample to a conjecture of Zassenhaus on automorphisms of integral group rings. The group is constructed in the spirit of [8]. An augmented automorphism of ZG which has no Zassenhaus factorization is given explicitly (this was already done in [7] for a group of order 6720), but this time only a few distinguished group rin...

متن کامل

The Chowla–Selberg Formula and The Colmez Conjecture

In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 1995

ISSN: 1071-5797

DOI: 10.1006/ffta.1995.1025